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Trapping Bragg solitons by a pair of defects
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We study collisions of moving solitons in a fiber Bragg grating with a structure composed of two local
defects of the grating, attractive or repulsive. Results are summarized in the form of diagrams showing the
share of the trapped energy as a function of the soliton’s velocity and defects’ strength. The moving soliton can
be trapped by aavity bounded by repulsive defects; a well-defined region of the most efficient trapping is
identified. The trapped soliton performs persistent oscillations in the cavity, with the frequency in the GHz
range. For attractive defects, essential differences are found from the earlier studied case of the collision of a
soliton with a single defect: in this case, too, there appears a well-defined region of the most efficient trapping,
and the largest velocity, up to which the soliton can be captured, increases. The findings may be significant for
experiments aimed at the creation of “standing-light” pulses in the fiber gratings and for related applications.
Collisions between identical solitons moving across the two-defect structure are also studied. On the attractive
set, soliton-soliton collisions may give rise to symmetric capture of the solitons by both defects or merger into
a single pulse trapped at one defect.
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I. INTRODUCTION of considerable interest to the general theory of solitary

The interaction of nontopological solitons with local de- Waves in inhomogeneous media. .
fects is a topic of general interest in various physical con- 1€ subject of this work is interaction of Bragg solitons
texts; see the review ifL] and more recent work.g.,[2]). w!th a symmetric pair of local defects in the fiber grating,
Recently, interactions of this type have drawn special attenw'tr,‘ thg distance between them on thg order_ of several soli-
tion in nonlinear optics, where they can be realized in termd@n's widths. We demonstrate that this setting offers new
of gap solitons(or more general wave packei3]) in fiber p055|b|I|t|es to achieve the capture of moving sol|.tons. First,
Bragg gratingg4—6] or photonic crystal§7] with intrinsic if both defects are attractive ones, the incident soliton may be

defects. In particular, the collision of a moving Bragg soliton slowed down and/or distorted by the first defect so as to help

with a strongly localized attractive inhomogeneity was Stud_the second defect trap it. Achieving more efficient capture is

ied in Ref.[5]. Inhomogeneity was realized as a local dis_a relevant issue, as the slowest Bragg solitons currently
i f.th : i 2 3|' Ve defect is al ble available to the experiment have velocity no smaller than 0.5
ruption ot the grating. A répulSive detect 1S also possIDIE INya mayimum velocityc,,q, [13], while the largest velocity

the grating in the form of a short segment with enhancedyhich admits the capture of the soliton by a single attractive
Bragg reflectivity. On the basis of systematic simulations, ityefect of the grating is~0.45,,, (and in that limit, the
was concluded that three qualitatively different outcomes ofyality of the capture is poor, as a considerable part of the
the collision occur: transmission, capture, and splitting of thesgliton’s energy is losf5]). The use of the two-defect con-

soliton into three pulseéransmitted, trapped, and reflected figuration may help to bridge the remaining gap between the
ones. In some caseéwhen the incident soliton is “heavy” available and necessary velocities.

and, strictly speaking, unstable by itge#fimost all the en- Completely new possibilities are offered by a configura-
ergy goes into the reflected pulse, so that the attractive defetibn consisting of tworepulsivedefects. This structure also
may look as an effectively repulsive one. may trap a passing soliton and then hold in the form of an

The possibility of capturing the moving soliton by the oscillator in the effectiveavitybounded by the defects. Note
defect, and thus the formation of a stable pulse of standinghat the strength of the localized attractive defect, which re-
light, is an issue of considerable applied interest, as it may bkes upon local suppression of the Bragg reflectivity in a
used to design all-optical memory elements, with the solitomarrow segment of the fiber, which must be much smaller
playing the role of a bit. This issue is also closely related tathan the size of the solitofthe latter takes values in the
the challenging problem of the creation of “slow ligh8] range between-1 mm and~1 cm) is fundamentally lim-
(the latter problem was specially considered in terms of slowited. Contrary to this, the repulsive defect, which makes use
solitons in Refs[5,9—-11). Another potentially promising as- of locally enhancedeflectivity, may be, in principle, arbi-
pect of the interaction between moving solitons and gratingrarily strong[5] (see details beloy hence, the repulsive
inhomogeneities is a possibility to use it in fiber-grating sen-pair may provide for a stronger tool for manipulations with
sors, which is a very important applicatioh2] (currently,  the solitons. In addition, the gap-soliton oscillator realized in
sensors operate only in the linear regjmesides that, the the cavity may by itself be of interest to applications, such as
interaction of moving Bragg solitons with defects is an issuethe development of sources or detectors of GHz radiation
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(the frequency of oscillations of the Bragg soliton trapped inA=(2h/n)sin 6, where\ is the wavelength and=1,2,... is

the cavity is expected to be in the range of 1-10 GHz

This paper is organized as follows: the model is formu-

the order of the resonande the limiting case of9=/2,
this condition carries over into the one for the fiber grating,

lated in Sec. Il. Section Il presents results of a systemati©i=\n/2). Recently, discrete spatial gap solitons were created
numerical analysis of collisions of a free soliton with the pairexperimentally in an array of tunnel-coupled waveguides
of attractive defects, with the focus on possibilities to trapwith a strong nonlinearity18].

the soliton. Section IV deals with the most interesting case— The real(positive or negativeconstant« in Egs.(1) and

i.e., the capture of an incident soliton by a cavity formed(2) measures the strength of the local defects, which may be
between two repulsive defects. In Sec. V we consider, in &reated as narrow regions with suppres$gd-0) or en-

less systematic form, collisions between two Bragg solitonshanced(x<0) grating. In either case, the size of the per-
traveling in opposite directions, in the presence of the pair ofurbed regions is assumed to be much smaller than a charac-
attractive defectéthe same case with the repulsive pair doesteristic lengthx,.q necessary for the complete reflection on

not yield noteworthy resulisCollisions between Bragg soli-
tons is an issue of considerable intergB4], especially as
concerns a possibility of their fusion into a single pul&6].

the uniform grating, which is, typically;-1 mm in physical
units [13,16, or may be increased up tel cm for very
weak gratings. The same length; determines a character-

In this work, we demonstrate that the pair of attractive de-stic spatial width of the soliton. For positive this implies
fects may catalyze the fusion, ending up with a single solitorthat the s-function terms in Egs(1) and (2) correctly de-
trapped by one of the defects. The paper is concluded by Seseribe the narrow grating-suppression defects only with

VI.

Il. MODEL

We approximate a local disruptiofor enhancemehtof
the resonant Bragg gratinghe defect by &-function terms
added to the standard systéirb,16 of coupled-mode equa-
tions for the amplitudes of right- and left-traveling waves,
u(x,t) andu(x,t), in the nonlinear fiber equipped with Bragg
grating. Thus we arrive at the following model, written in the
usual notatiorj15,16:

B )
o 2 2 2/
(1)
o <|v|2 2) [( L) ( L)]
i——i—+u+|—+|u|o=xk| S| x== |+ 68 x+=||u,
a X 2 2 2
(2

wherex is the coordinate along the fiberjs time, and the
ordinary ratio between the self-phase-modulati&RM) and
cross-phase-modulatidiXPM) coefficients, 1:2, is adopted.

In these equations, the SPM coefficient itself, group veloci-

ties, and Bragg reflectivity in the uniform grating are all

<1, as the Bragg reflectivity in the uniform grating is nor-
malized to be 1, which implieg.;~1 in the same units.
Consideration of the form of the soliton solutipsee Egs.
(6) and(7) below| and detailed results of numerical simula-
tions, it is reasonable to fix the applicability condition of the
present model, for positive, as

k<0.3. €]
On the other hand, for negative there is no principal limit
on the size of«|, as in this case thé-function terms in Egs.
(1) and (2) account for the local perturbation in the form of
enhanced Bragg reflection. As the gratings used in experi-
ments with the Bragg solitons are rather weéshallow”)
[13], the local enhancement may feelatively) strong[5]
(although the form of the coupled-mode equations may need
to be altered for deep grating$9]).

Equations(1) and (2) can be derived from the Hamil-
tonian

+o0
|

= U= (u'v + UU*):|dX+ Hint,

1 . . « o 1
|:§|(_ U U+ vy + Ul —ovy) = Z(|U|4+ |v|4)

(4)

normalized to be 1, and two identical pointlike defects are

placed at pointx=+L/2. The model does not include a

with the asterisk and subscript standing for the complex con-

possible but less interesting additional component of the dgugation and partial derivative, respectively. The perturbation

fect, in the form of a local perturbation of the refractive
index[4,5].
While Egs. (1) and (2) describe temporal solitons, the

same model may also be realized in the spatial domain. In
that case, it describes two waves in a nonlinear planar wave-

guide, witht replaced by the propagation distance and

part of the Hamiltonian, which accounts for the interaction of
the soliton with the defects, is

(5

Hine = 2 k(U'v + UU*)|x:tL/2-

+-

being the transverse coordinate. The Bragg reflection is pro- Exact solutions to Eqg1) and (2) with k=0, which de-
vided by a grating in the form of a system of parallel ridgesscribe solitons moving at a velocitfc?< 1) in the uniform

or grooves with spacin@ on the surface of the waveguide,
the Poynting vectors of the two waves forming angles +
with the grating. This setting may give rise $patial gap

solitons[17] under the Bragg resonant-reflection condition

fiber grating, were found in Ref§15]:

2(1+c
3-¢?

(1 =AY W(X)exdip(X) —iT cosd],

Usol =
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2(1-c
3-¢

(1 -cAYW (X)exdip(X) —iT cosd].
(6)

Here, 8 is an intrinsic parameter of the soliton family which
takes values & < and

Usol =~

xX— &) T2 t—cx
v1-c? v1-¢?’

X=

_dc , 9
H(X) = & tar 1{ tanH (sin H)X]tar( 2) } ,

W(X) = (sin a)secr{(sin O)X - Ig} , (7)

with dé/dt=c. It is known that this family of Bragg solitons
is stable in the region of < 6., with 6., slightly larger than
/2 [in particular, 6,~1.01(w/2) for c=0 [20,21]. The
critical valueé,, very weakly depends oty up to|c|=1[21].

Equations(1) and(2) with k# 0 conserve two dynamical
invariants: the Hamiltoniafd) and the norm of the solution
(the latter is frequently callednergyin optics, although it is
different from the Hamiltonia)y

E= f (Ju? +|v]?dx. (8)
The norm of the exact solutiof®) (for k=0) is
860(1-c?)
Esol= 3. 9

An exact solution is also available for a quiescért0)
soliton trapped by a single defect with the strengthof
either sign, set atx=0 [5]:

2 —it COS O/ i H — ¢
{uv}= =+ ée (sin #)sech (x +asgnx)sin 6 * S|
(10)

where the two signs pertain to tlkeandv components, and
the constant is uniquely determined by the relation

. tanh «/2)
t 0)=—. 11
anh(a sin 6) ——l (11
The pinned-soliton solution exists in the region
2 tan tanh(x/2)] < 6 < . (12
Its energy(norm), defined as per Ed8), is
8
E= —( 60— | I - simY(sechx) sgnx) (13
3 2
[cf. Eq.(9) with c=0], and its intensity at the central point is
2 Sir? 6
lux=0)>=|v(x=0)?== (14)

3sintf(asin 6) + cos
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[for the soliton pinned at the repulsive defect, witk: 0, Eq.
(11) yields a<0; hence, this soliton has a local minimum,
rather than maximum, at=0]. The pinned solitons were
found to be stable only ifl is very close tor/2 (and only for
x> 0); note thatd=7/2 always belongs to the existence in-
terval (12), and Eq.(11) yieldsa=«/2 for 6=m/2.

If «is a small parameter, the interaction between a slow
soliton (6), with |c|< 1, and the pointlike defect is governed
by an effective potential which is calculated by substitution
of the wave form(6) in the interaction Hamiltoniai5) [5],

§ K sSin? 6
3cosh(2£ sin 6) + cos’

Uint(g) == (15)

where¢ is the instantaneous coordinate of the soliton’s cen-
ter. The slow soliton moves in this potential as a nonrelativ-
istic particle with effective massM(6)=(8/9)(7 sing

—-46 cos6) [11]. In the model with two defects, an effective
potential can be constructed as a superposition of two singe-
defect potential$15), Ugi(&) =Uin(E-L12) +U;(E+LT2).

IIl. INTERACTION OF A FREE SOLITON WITH THE
PAIR OF ATTRACTIVE DEFECTS

We start the analysis with the case of two attractive de-
fects, which is an extension of the previously developed
analysis of the interaction of the soliton with a single defect
[4,5]. With either sign of the defects, Eqdl) and (2) were
simulated in the domain —-60x< +60 by means of the stan-
dard split-step scheme. The spatial derivatives were com-
puted through the fast Fourier transform on the mesh of 1024
points. A typical width of the soliton being 1.5[in normal-
ized units adopted in Eg$l) and (2)], this implies that the
soliton’s shape was approximated by a set=#0 points. It
was checked that a finer mesh produced the same results.
The 6 functions were modeled in the usual way, by a
rectangular-box inhomogeneity including, in most cases, four
points. We checked that a more accurate approximation for
the & functions did not affect the results.

The time derivative was approximated by the forward fi-
nite difference. The respective step sixtewas taken smaller
and smaller until results became insensitive to its further re-
duction. In some cases, it was necessary toAises small as
5X 1074 To prevent emitted radiation from getting back into
the integration domain, two edge absorbers were installed,
each occupying 20 points of the discrete méshwas ob-
served that, in very long simulations, the absorbers were es-
sential, really suppressing the emitted radiation

Below, results are displayed for the pair of defects placed
at pointsx=+8, so that the distande=16 between them is,
roughly, 10 times the mean soliton’s width. Results obtained
with other values of. are very similar to those reported here.

Simulations started with the exact solit(#), taken suffi-
ciently far from (to the right oj the defects; see Fig. 1. To
initiate the collision, the soliton was lent a negative velocity
¢ (therefore itsu andv components are not symmetric in Fig.
1). It was checked that setting the initial soliton still farther
from the defects did not affect the outcome of the collision.
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FIG. 1. The initial configuration used in the simulations. Here, a5k positionof | position of
the soliton is shown witl9=/2 andc=-0.5; see Eqs(6). ' second defect) | first defect
| |
Most results are displayed below for the val@re/2 of Ar ‘ [
the intrinsic parameter of the soliton; see E@#). This a5l [
choice is quite natural, as the soliton’s widthl/siné at- ' ~/A\
tains its minimum in this case; hence, it is of major interest 3 /~
to the experiment and potential applications. Note that a solig ‘“.i; }
ton trapped by the single attractive defect may be stable onl2 , ;L ]
for 6 very close tow/2 [5], and this value simultaneously g ‘M
belongs to the stability region of the free Bragg solitonsk > E N
[20,21]. However, some results will also be given for values \i
. . Ry
of # essentially different fromr/2. 1.5 i
If the first attractive defect fails to capture the incident "'vi‘h
soliton, this defect, nevertheless, affects the soliton in such E | "i;*'
way (the soliton undergoes an internal distortion, and in l “
some cases it is also slowed dowthat its capture by the 05F ’ ! /\L
second defect is facilitated. An example of suchaasisted T TR —

captureof a relatively slow soliton by the second defect is )
given in Fig. Za). In the same setting, a faster soliton splits,

as shown in Fig. @), with a considerable part of its energy  FiG. 2. Typical examples of the interaction of a moving Bragg
trapped by the second defect, while another part escapes #liton with the attractive two-defect structure) The soliton with
the form of a weak transmitted pulse. A very small share ofthe velocityc=-0.4 passes the first defect, but is easily captured by
the energy is reflected, by both defects, in the form of radiathe second one, both with having the streng#0.27. The soliton’s
tion waves. A common noteworthy feature of the examplesntrinsic parameter i®=/2. (b) A large part of the energy of the
showed in Figs. @) and 2b) is a possibility to capture the incident soliton withc=-0.5 andf=/2 (which would freely pass
entire soliton or its large part by the second defect in casethe single defegtis snared by the second defect, in the case of
when the single attractive defect would fail in doing this. =0.3.

Results of many runs of simulations are summarized in
the diagram displayed in Fig(&® which shows the share of viding for the capture of the soliton at the same velocity by
the initial soliton’s energysee Eq(8)] eventually trapped by the single defecf5]). In the opposite case, ¥ exceeds val-
the second attractive defect. As is seen, there is a wellies providing for the capture, the soliton actually does not
defined parameter region providing for the most efficientreach the second defect as it gets either tragped some-
capture. This conclusion is additionally illustrated by crosstimes destroyedby the first defect or bounces back from it
sections of the diagram at two different fixed values of the(recall that, in some cases, a bounce from the attractive de-
velocity, which are displayed in Fig(B). If the value ofk is  fect is possibld5]).
smaller than one providing for essential trapping at a gijen It is relevant to compare these results to those obtained
the soliton passes through the two-defect tiaparticular, a  with a single attractive defect. For this purpose, Fi¢c)3
sharp border of the capture region ff=0.4 starts atx  shows the capture diagram for that case. As is seen, the char-
~0.25, which is very close to the minimum value fro-  acter of the capture is then completely different, as there is

X
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FIG. 3. (a) The contour plots of the share of the initial soliton’s energy trapped by the second defect as a result of the collision in the
plane of the soliton’s velocitg and defects’ strengtlk (for the attractive defects, witk>0). The diagram pertains to the solitons with
0=m/2. (b) Cross sections of the diagram from paf®lat fixed values of the velocityc) For comparison with pan€b), the contour plots
of the trapped-energy share is shown here for the single-defect model. This diagram also pertains to the solitensARith

no distinguished region providing for the most efficient trap-for #=m/4 (the shape of this soliton is closer to the

ping, in contrast with the two-defect model. Taking into re- nonlinear-Schrédinger limitl4]). As is seen from Fig. @),

gard the limitation(3) on the size of positiver, we conclude a region of the strongest trapping can be also identified for

that, at the smallest velocity available to the current experithe solitons with smalle®, although it is shifted to much

ments[13], |c|=0.5, the set of single attractive defects admitssmaller velocity.

the capture of only=7% of the soliton’s energy, while the

two-defect set captures 408bounting only v_vhat is captured |\, TRAPPING OF SOLITONS BY A PAIR OF REPULSIVE

by the second defextThus, the set consisting of two attrac- DEFECTS

tive defects helps to snare a moving soliton in a more effi-

cient way than a single defect can do it; however, the effi- As explained above, the possibility to capture a moving

cacy of the capture is still below 50%. Below, it will be Bragg soliton in the cavity formed by two repulsive defects

shown that the set of two repulsive defects provides foiis a new effect, without any previously considered counter-

higher efficacy. part. A typical example of the capture of the soliton into a
All the above results pertain t@=m/2, which corre- stable state, in the form of a stable pulse performing persis-

sponds, as said above, to the narrowest soliton. Results wetent oscillations in the cavity, is displayed in Fig. 5. The

also collected for other values 6f see an example in Fig. 4 evolution of the pulse’s energy, which we define as the share
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FIG. 5. Capture of the solitofiwith #==/2), moving at the
velocity ¢=0.4, by the pair of repulsive defects with the strength
x=-0.2.(a) The evolution of the fieldu(x,t)|>. (b) The trajectory of
the center of the captured solitgdashed curyeand evolution of
the shard“fraction”) of the initial energy which is trapped between
of the initial energy of the soliton confined in the cavity the defectgsolid curve. The soliton’s center is realized as a point
(between the pointg=*L/2), shows a trend to stabilization where the fieldu(x)| attains its maximum, at a given moment of
[see Fig. Bb)] after the captured soliton suffers some radia-time.
tion loss at a transient stagemall portions of radiation are
emitted when the soliton bounces from the defects whictof the most efficient capture can again be clearly identified.
bound the cavity. However, a notable difference is that, in comparison with the

An overall diagram showing the efficiency of the soliton’s case of the two attractive defects, the efficient region extends
capture by the set of two repulsive defects is displayed irto larger values ot. In particular, Fig. ) shows that the
Fig. 6(a), and examples of its cross sections at fixed values ofrapping efficacy of 60% can be attained fof=0.5, which
the velocity are shown in Fig.(B). If the defects’ strength| is definitely beyond the reach of the settings with attractive
is smaller than the minimum one which is necessary for thelefects.
capture, the soliton passes through the cavity; in the opposite The set of repulsive defects is quite efficient too in trap-
case, wherlk| exceeds the maximum value admitting the ping “heavy” solitons, with¢> /2. Strictly speaking, such
capture, the soliton bounces back from the first defect. solitons are unstablf20,21], but if the evolution time be-

These capture diagrams resemble their counterparts in theveen the creation of the soliton and its collision with the
case of the attractive sétf. Fig. 3) in the sense that a region defect structure is not too large, the consideration of their

FIG. 4. The same as in Fig. 3 but for the soliton with /4.
(a) Contour plots for the trapped enerd) Cross sections of the
diagram in panela) at fixed values of the velocity.
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FIG. 7. Oscillations of a “heavy” soliton, witl#=(3/4)7 and
09 c=-0.5, captured by the pair of repulsive defects with—0.35.

C The drop in the share of the energy trapped in the cavity is ex-
0.8 a plained by radiation loss.
07k V. COLLISIONS OF SOLITONS IN THE TWO-DEFECT
c - STRUCTURE
"% 0'6;' A natural extension of the above analysis is to consider
Z 05 5 collisions between two identit_:al i_n-phase _solitqukth zero
SF phase shift between thgmmoving in opposite directions, so
g sk that the collision point falls within the space between the two
'§ “E defects. Collisions of solitons in the presence of a single
& 03 2 attractive defect were simulated in R¢&], with a conclu-
= - sion that the collision does not essentially facilitate the cap-
o2 ture of a pulse by the defect. In the case of two attractive
- defects the situation may be different, with sundry outcomes
01 of the collision. One possibility is that each soliton gets cap-
- tured by a defect, so that a symmetric trapped pair of the
Ol = 05 0 i solitons appears; see an e>_<a.mple in Fig).8Another note-
b) . worthy outcome is a possibility o§pontaneous symmetry

breaking resulting in amergerof the colliding solitons into

FIG. 6. Capture of the moving solitoriwith 6=/2) by a setof & Single one, which collects nearly all the initial energy. This
two identical repulsive defectéa) Contour plots of the share of the Single pulse may be trapped by either defect; see Kiy. 8
initial energy that remains trapped in the cavity between the defects; The latter outcome can be readily explained. Indeed, iden-
cf. Fig. 3a). (b) Cross sections of the diagram in pat@l at two  tical solitons with zero phase shift attract each other; hence,
fixed values of the velocity; cf. Fig.(B). the collision between them leads to the formation of a tem-

porary “lump” (single pulsg as seen in both panel$a and

8(b). In the former case, the lump splits again into two qua-
evolution also makes sense. We have observed that such sddisolitons, and each is then captured by one of the attractive
tons are readily captured by the pair of repulsive defects, andefects. However, in the latter case the lump stays unsplit for
they gradually reduce their energy other words, the value a longer time(because the collision took place with smaller
of 6) in the course of the oscillatory motion in the cavity, asvelocitiesc=+0.4, rather tharw=+0.5). This heavy pulse is
shown in Fig. 7. Although very long simulations were not attracted by both defects, and obviously, its equilibrium po-
run in this case, we expect that the soliton will eventuallysition at the midpoint is unstable. Therefore, a small shift of
relax to one with a quasistationary shape. The simulationthe lump from the center leads to its capture by a single
also showed that “light” solitong¢for instance, one withd  defect. Although no off-center shift was deliberately intro-
=m/4) are easily trapped by the repulsive set too and themluced in the simulations, numerical errors may provide for a
perform oscillations in the cavity without any conspicuoussmall perturbation that initiates the spontaneous symmetry
loss (not shown here Thus, the trapping mode provided by breaking.
the repulsive set is quite robust, providing for the capture of Thus, the pair of attractive defects gives rise to the colli-
a broad spectrum of the Bragg solitons. sional dynamics which may be drastically different from
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- position of position of what was observed in the presence of a single attractive de-
0.5 fect. Unlike the attractive set, a pair of repulsive defects does
‘\-d not generate particularly interesting results of the collision.
'— Typically, the solitons either bounce and separate or pass
0.4 iw’\ through each othefprovided that they are given zero phase
‘W\ difference, so that their mutual interaction is attractive
5 =
e (AT :
g o0 ‘W | .VI CO-NCLUSI.ON | |
g :,'Q‘:« We have investigated interactions of moving Bragg.soh—
= V‘LUJ\‘ tons with a structure composed of two defects, attractive or
02 ;"é’ﬁ; repulsive. Results of the collisions were quantified by para-
la'«% metric diagrams which show the share of the trapped energy
“ﬁ,;gi'tv{é},ﬁ% as a function of the soliton’s velocity and strength of the
0.1 ”,,g;;g"'U"“s,{;’p{“ defects. In the case of the attraction, essential differences
;;"#" “‘\’ﬁj' from the earlier studied cagé] of the collision of a soliton
J:'b\ . IR with a single defect were observed: there appears a well-
ol T r 1 defined region of the most efficient trapping, and the maxi-
(@) 60 40 20 2 20 40 mum velocity, up to which the capture of a considerable part
of the soliton’s energy is possible, increases.
1 A totally new situation is the capture of the moving soli-
g position of ./ position of ton by a cavity bounded by two repulsive defects. In this
09 A case, the trapped soliton then performs persistent oscillations
] = in the cavity(with the frequency in the GHz rangand may
08 ;\\_"' find specific applications in this capacity. A parametric re-
07 f\‘{ 1 gion of the most efficient capture was identified in this case
&, = too. A promising result is that the region of the efficient
—_ 7 i i i
S 06 9 capture extends to values of the velocity which are available
§ ’\\ in current experiments. A moving unstabl&oo heavy’)
by 0.5 ) soliton can also be readily captured by the cavity and re-
E 04 shaped into a stable oscillating pulse.
e These results may be relevant to experiments aimed at the
0.3 creation of pulses of “standing light” in fiber gratings, as
well as for potential applications to the design of soliton-
02 based optical sensors, and of all-optical memory cells, where
solitons would be used as bits.
0.1 Finally, we have considered collisions between identical
0 ettt in-phase solitons in the presence of the two-defect structure.
‘60 -50 40 -30 -20

It was concluded that, with the attractive defects, nontrivial
() X outcomes are possible: namely, symmetric capture of two
solitons by the two defects and, what is especially interest-
FIG. 8. Outcomes of collisions between two identical solitonsing, merger of the solitons into a single pulse captured by
with §=7/2 and zero phase difference, the collision point being setone defect.
at the middle of the pair of attractive defectq) Formation of a

symmetric trapped state of two solitons in the case when they col- ACKNOWLEDGMENTS

lide with velocitiesc=+0.5 and the defects’ strengthAs=0.45.(b)

Merger of two solitons, colliding with velocities=+0.4, into a Two authors(P.Y.P.C. and B.A.M. appreciate hospitality
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